Environmental Product Declaration In accordance with ISO 14025 and EN 15804:2012+A2:2019/AC:2021 for: # Altech foam insulated copper pipes - Altech isolerade kylkopparrör from Saint-Gobain Distribution Sweden AB Program: The International EPD® System, www.environdec.com Program operator: EPD International AB EPD registration number: Publication date: Valid until: S-P-12720 2024-06-05 2029-06-04 EPD of multiple products, based on worst-case results. An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at www.environdec.com #### **General information** #### **Programme information** | Programme: | The International EPD® System | | | | | | |------------|-------------------------------|--|--|--|--|--| | | EPD International AB | | | | | | | Address | Box 210 60 | | | | | | | Address: | SE-100 31 Stockholm | | | | | | | | Sweden | | | | | | | Website: | www.environdec.com | | | | | | | E-mail: | info@environdec.com | | | | | | | Accountabilities for PCR, LCA and independent, third-party verification | | | | | | | | |---|--|--|--|--|--|--|--| | Product Category Rules (PCR): Construction Products PCR 2019:14 version 1.3.3 | | | | | | | | | CEN standard EN 15804:2012+A2:2019/AC:2021 serves as the Core Product Category Rules (PCR) | | | | | | | | | PCR review was conducted by: The Technical Committee of the International EPD@ System. | | | | | | | | | Life Cycle Assessment (LCA) | | | | | | | | | LCA accountability: Fanni Végvári, CarbonZero AB | | | | | | | | | Third-party verification | | | | | | | | | Independent third-party verification of the declaration and data, according to ISO 14025:2006, via: | | | | | | | | | | | | | | | | | | Third-party verifier: Stephen Forson, Viridis Pride Ltd., UK | | | | | | | | | Approved by: The International EPD® System | | | | | | | | | Procedure for follow-up of data during EPD validity involves third party verifier: | | | | | | | | | □ Yes ⊠ No | | | | | | | | The EPD owner has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programmes may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804. For further information about comparability, see EN 15804 and ISO 14025. #### **Company information** | Owner of the EPD | Saint-Gobain Distribution Sweden AB | | | | | | | | | |-------------------------|---|--|--|--|--|--|--|--|--| | | Bryggerivägen 9 | | | | | | | | | | | 168 67 Bromma Stockholm | | | | | | | | | | Contact | SGDS - Beriar Maroof (beriar.maroof@sgdsgruppen.se) | | | | | | | | | | December Comment (Inc.) | | | | | | | | | | ### Description of the organisation Saint-Gobain Distribution Sweden AB - specialists in collaboration for more efficient business in construction and installation. Saint-Gobain Distribution Sweden AB is the head company of some of Sweden's leading trading companies in construction, sheet metal, tiles and installation. All the companies have long and solid industry experience and provide most of Sweden's craftsmen with materials for various projects. Customers in different companies can also buy support items from the sister companies in the group, and in selected cases, we take joint projects to facilitate the logistics of the supply of goods, which is then often critical for a smooth construction project. - Optimera construction trade for professional carpenters - Dahl heat, plumbing and sanitary specialist - Bevego building sheet metal, ventilation and technical insulation - Kakelspecialisten and Konradsson's Tiles tiles, tiling and bathroom fittings The company's focus is on sales and services with direct contact to about 150,000 customers regularly. Saint-Gobain Distribution Sweden AB is owned by Saint-Gobain with a presence in 64 countries and over 190 000 employees worldwide. ## Location of production site Oinofyta, Greece #### **Product information** | Product name | Altech foam insulated copper pipes - Altech isolerade kylkopparrör | |------------------------|---| | Product identification | Copper pipes | | Product description | This product is made of copper and polyethylene foam. | | Use | Altach Insulated refrigement pines of years high quality. At least 00 00/ | | USE . | Altech Insulated refrigerant pipes of very high quality. At least 99.9% copper. Worked easily even at low temperatures. Soft UV resistant insulation of polyethylene with closed microcells, withstands | | | aggressive environment and ensures a long service life. | | Technical data | Made in Europe in accordance with EN 12735-1. Supplied in 20-
meter loop with sealed ends. | | UN CPC code | 41516 - Tubes, pipes and tube or pipe fittings, of copper | #### **LCA** information | Functional unit / declared unit | 1 kg of Altech isolated copper pipes - Altech isolerade kylkopparrör | |-----------------------------------|--| | Reference service life | Not applicable | | Database(s) and LCA software used | Calculation completed in LCA for Experts v10.7 with an integrated Ecoinvent database 3.8 | | System boundaries | Cradle to gate, with options. (A1-A3, A4-A5, C1-C4, D) | #### **More information** The EPD covers the following range of products from Dahl: Altech isolated copper pipes - Altech isolerade kylkopparrör | Article number single pipes | Dimensions
(inch) | Article number
double pipes | Dimensions
(inch) | Length (m) | | |-----------------------------|----------------------|--------------------------------|----------------------|------------|--| | K5131302 | 1/4 | K5131320 | 1/4 x 3/8 | 20 | | | K5131304 | 3/8 | K5131322 | 1/4 x ½ | 20 | | | K5131306 | 1/2 | K5131324 | 1/4 x 5/8 | 20 | | | K5131308 | 5/8 | K5131326 | 3/8 x ½ | 20 | | | K5131310 | 3/4 | K5131328 | 3/8 x 5/8 | 20 | | | K5131312 | 7/8 | K5131330 | 3/8 x 3/4 | 20 | | #### A1, Raw material supply This module considers the extraction and processing of all raw materials, energy, and transportation which occur upstream of the studied manufacturing process. #### A2, transport to the manufacturer This module includes the transportation of raw materials to the manufacturing site. #### A3, manufacturing This module includes all resources used during the production of Altech insulated copper pipes and waste produced. This also includes additives and packaging material. Data has been collected by the manufacturer from the production year of 2021, the full 12 months from January 2021 to December 2023. #### A4, Transport Transportation from the manufacturing site in Greece to Saint-Gobain Distribution Sweden AB's distribution center and then from the distribution center to the building site is included. | Scenario information | Unit (expressed per declared unit) | |---|------------------------------------| | Fuel type and consumption of vehicle or vehicle type | Average truck trailer with a 27 t | | used for transport e.g. long distance truck, boat etc. | payload 0,019 l/tkm diesel | | Distance | 3 370 + 350 km | | Capacity utilisation (including empty returns) | 61% | | Volume capacity utilisation factor (factor: =1 or <1 or | Not applicable | | 1 for compressed or nested packaged products | | #### A5, Construction installation This stage is partially included to balance the biogenic content in packaging. #### B1-B7 Use stage This stage is not declared. #### C1 Deconstruction/Demolition This stage includes the de-construction and/or demolition of the insulated copper pipes. #### C2 Transport This module represents the transport distance to the waste processing facility. #### C3 Waste processing This module includes any waste treatment needed. #### C4 Final disposal This module includes any material that is landfilled. | Processes | Unit (expressed per declared unit) | | | | |--|--|--|--|--| | Collection process specified by type | 1 kg collected | | | | | | 0 kg collected with mixed construction waste | | | | | Recovery system specified by type | 0 kg for re-use | | | | | | 0,913 kg for recycling | | | | | | 0,037 kg for energy recovery | | | | | Disposal specified by type | 0,05 kg product or material for final deposition | | | | | Assumptions for scenario development, e.g. | The transportation model is modelled as in | | | | | transportation | module A4, except the transportation distance is | | | | | | assumed to be 50 km to the waste processing. | | | | #### D Benefits and loads beyond the system boundary This module includes emission credits obtained from energy recovery and/or recycling materials. #### Omissions of life cycle stages The following flows were excluded from the system boundary: - A1-A3: The plants, production of machines and transportation systems are excluded since the related flows are supposed to be negligible compared to the potential environmental impacts through the life cycle of the product - A5: The installation of the products - B1-B7: The use phase of the products is not included In addition, the following flows are excluded from the system boundaries: Flows related to human activities, such as employee transport #### Cut-off criteria The following procedures were followed for the exclusion of inputs and output. - All input and output flows in a unit process were considered i.e., taking into account the value of all flows in the unit process and the corresponding LCI where data was available - Data gaps were filled by conservative assumptions with average or generic data. Any assumptions in such cases were documented - The use of cut-off criterion on mass inputs and primary energy at the unit process level (1%) and at the information module level (5%) All hazardous and toxic materials and substances are included in the inventory and the cut-off rules do not apply. #### **Content declaration** #### Content | Content declaration | Amount (kg) | |----------------------------|-------------| | Copper | 0,95 | | Polyethyleme foam | 0,05 | | Total | 1 | | Packaging materials | Weight, kg | Weight-% (versus the product) | |---------------------|------------|-------------------------------| | Cardboard | 5,43E-02 | 5,43 | | LDPE | 1,97E-02 | 1,97 | | PP | 5,62E-04 | 0,0562 | | Metal | 6,81E-05 | 0,00681 | | Pallet | 7,72E-02 | 7,72 | | Total | 0,152 | 15,20% | #### Modules declared and geographical scope | | Product stage Assembly stage | | | | Use stage | | | | | | End of life stage | | | | Benefits &
loads
beoyond
system
boundary | | | |--------------------|------------------------------|-----------|---------------|-----------|-----------|-----|-------------|--------|-------------|---------------|------------------------|-----------------------|----------------------------|-----------|--|----------|--| | | Raw materials | Transport | Manufacturing | Transport | Assembly | Use | Maintenance | Repair | Replacement | Refurbishment | Operational energy use | Operational water use | De-construction demolition | Transport | Waste processing | Disposal | Reuse-Recovery-Recycling-
potential | | Modules | A1 | A2 | A3 | A4 | A5 | B1 | B2 | В3 | B4 | В5 | В6 | В7 | C1 | C2 | С3 | C4 | D | | Modules declared | X | X | X | X | X | ND X | X | X | X | X | | Geography | GR | GR | GR | EU | SE | - | - | - | - | - | - | - | SE | SE | SE | SE | SE | | Specific data used | 8% | | - | - | - | - | - | - | - | - | - | - | - | - | - | | | | Variation products | 0% | | | - | - | - | - | - | - | - | - | - | - | - | - | - | | | Variation sites | 0% | | | - | - | - | - | - | - | - | - | - | - | - | - | - | | #### **Environmental Information** The estimated impact results are only relative statements, which do not indicate the endpoints of the impact categories, exceeding threshold values, safety margins and/or risks. As module C is included in the EPD, it is discouraging the use of the results of modules A1-A3 (A1-A5 for services) without considering the results of module C. #### Potential environmental impact – indicators according to EN 15804+A2 | | | | Results per declared unit: 1 kg | | | | | | | | | | |------------------------|---|--|--|--|---|--|---|---|--|--|--|--| | Indicator | Unit | A1-A3 | A4 | A5 | C1 | C2 | С3 | C4 | D | | | | | GWP-total | kg CO2 eq | 3,03E+00 | 2,79E-01 | 1,79E-01 | 6,34E-04 | 1,19E-04 | 2,47E-01 | 2,08E-03 | -1,55E+00 | | | | | GWP-fossil | kg CO2 eq | 3,19E+00 | 2,67E-01 | 5,19E-02 | 6,07E-04 | 1,16E-04 | 2,46E-01 | 2,10E-03 | -1,64E+00 | | | | | GWP-biogenic | kg CO2 eq | -1,72E-01 | 1,20E-02 | 1,27E-01 | 2,74E-05 | 3,44E-06 | 3,30E-02 | 2,60E-05 | -8,90E-02 | | | | | GWP-luluc | kg CO2 eq | 8,12E-03 | 1,51E-05 | 2,10E-06 | 3,37E-08 | 8,70E-09 | 8,03E-06 | 2,14E-06 | -2,82E-04 | | | | | ODP | kg CFC-11 eq | 8,57E-09 | 6,23E-08 | 1,51E-11 | 1,40E-10 | 1,76E-11 | 9,78E-11 | 3,47E-15 | -1,34E-12 | | | | | AP | mole H+ eq | 4,15E-02 | 7,88E-04 | 3,39E-05 | 3,70E-06 | 1,30E-06 | 7,43E-05 | 6,75E-06 | -3,86E-03 | | | | | EP-freshwater | kg P eq | 1,27E-05 | 2,85E-06 | 2,79E-07 | 6,38E-09 | 1,06E-09 | 1,41E-06 | 1,90E-09 | -1,59E-06 | | | | | EP-marine | kg N eq | 2,65E-03 | 2,32E-04 | 1,02E-05 | 1,49E-06 | 3,33E-07 | 2,57E-05 | 1,70E-06 | -6,83E-04 | | | | | EP-terrestrial | mole N eq | 2,76E-02 | 2,55E-03 | 1,35E-04 | 1,63E-05 | 3,62E-06 | 2,91E-04 | 1,86E-05 | -6,20E-03 | | | | | POCP | kg NMVOC eq | 9,17E-03 | 5,80E-04 | 2,82E-05 | 4,33E-06 | 9,17E-07 | 7,43E-05 | 5,31E-06 | -2,65E-03 | | | | | ADP-minerals & metals* | kg Sb eq | 1,79E-03 | 4,83E-08 | 7,19E-09 | 1,08E-10 | 2,06E-11 | 3,54E-08 | 5,76E-11 | -8,26E-06 | | | | | ADP-fossil* | MJ | 4,32E+01 | 3,81E+00 | 6,34E-02 | 8,53E-03 | 2,69E-03 | 1,71E-01 | 3,14E-02 | -1,95E+01 | | | | | WDP* | m3 | 1,64E+00 | 4,02E-03 | 1,90E-02 | 9,00E-06 | 1,11E-05 | 2,34E-02 | -2,86E-05 | -1,21E-01 | | | | | Acronyms | use change; ODP = potential, fraction of terrestrial = Eutrop | pal Warming Potential Depletion potential of nutrients reaching chication potential, A possil resources; ADP | of the stratospheric of
freshwater end comp
ccumulated Exceeda | ozone layer; AP =
oartment; EP-mari
nce; POCP = Fort | Acidification pot
ine = Eutrophicati
mation potential o | ential, Accumulate
on potential, fracti
f tropospheric ozo | ed Exceedance; Exion of nutrients reading; ADP-minerals | P-freshwater = Eut
aching marine end
s&metals = Abiotic | rophication
compartment; EP-
c depletion | | | | * Disclaimer: The results of this environmental impact indicator shall be used with care as the uncertainties of these results are high or as there is limited experience with the indicator. #### **Use of resources** | | | Results per declared unit: 1 kg | | | | | | | | |-----------|---------------------------|---|-----------|------------|----------|----------|-----------|----------|-----------| | Indicator | Unit | A1-A3 | A4 | A 5 | C1 | C2 | С3 | C4 | D | | PERE | MJ | 1,29E+01 | 1,11E-02 | 7,81E-03 | 2,23E-05 | 1,15E-03 | -1,55E-03 | 2,82E-03 | -2,17E+00 | | PERM | MJ | 1,69E-01 | 0,00E+00 | PERT | MJ | 1,30E+01 | 1,11E-02 | 7,81E-03 | 2,23E-05 | 1,15E-03 | -1,55E-03 | 2,82E-03 | -2,17E+00 | | PENRE | MJ | 4,32E+01 | 3,81E+00 | 6,34E-02 | 8,53E-03 | 2,69E-03 | 1,71E-01 | 3,15E-02 | -1,95E+01 | | PENRM | MJ | 1,80E-02 | 0,00E+00 | PENRT | MJ | 4,32E+01 | 3,81E+00 | 6,34E-02 | 8,53E-03 | 2,69E-03 | 1,71E-01 | 3,15E-02 | -1,95E+01 | | SM | kg | 0,00E+00 | RSF | MJ | 0,00E+00 | NRSF | MJ | 0,00E+00 | FW | m3 | 2,95E-02 | 9,51E-05 | 4,33E-04 | 2,10E-07 | 1,69E-06 | 4,83E-04 | 3,54E-07 | -1,49E-01 | | Acronyms | raw materi
used as rav | PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water | | | | | | | | #### **Additional voluntary indicators** | | | | Results per declared unit: 1 kg | | | | | | | |----------------------|---|----------|---------------------------------|----------|----------|----------|----------|----------|-----------| | Indicator | Unit | A1-A3 | A4 | A5 | C1 | C2 | С3 | C4 | D | | GWP-GHG ¹ | kg CO2 eq | 3,20E+00 | 2,67E-01 | 5,20E-02 | 6,07E-04 | 1,16E-04 | 2,47E-01 | 2,11E-03 | -1,64E+00 | | Acronyms | GWP-GHG global warming potential - greenhouse gases | | | | | | | | | #### Waste and output flows #### Waste | | | Results per declared unit: 1 kg | | | | | | | | |-----------|--|---------------------------------|-----------|-----------|----------|-----------|-----------|----------|-----------| | Indicator | Unit | A1-A3 | A4 | A5 | C1 | C2 | С3 | C4 | D | | HWD | kg | 3,37E-08 | -2,42E-13 | 2,57E-12 | 0,00E+00 | -2,41E-13 | 8,99E-12 | 2,60E-12 | -1,38E-07 | | NHWD | kg | 9,63E-01 | 1,49E-06 | 3,31E-03 | 0,00E+00 | 1,52E-06 | 3,55E-03 | 4,51E-02 | -1,71E-01 | | RWD | kg | 4,24E-04 | 4,33E-07 | -1,06E-07 | 0,00E+00 | 4,34E-07 | -9,63E-06 | 3,66E-07 | -3,99E-04 | | Acronyms | HW Hazardous waste disposed; NHW Non-hazardous waste disposed; RW Radioactive waste disposed | | | | | | | | | ¹ This indicator accounts for all greenhouse gases except biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. As such, the indicator is identical to GWP-total except that the CF for biogenic CO2 is set to zero. #### Output flows | | | Results per declared unit: 1 kg | | | | | | | | |-----------|----------|---------------------------------|-----------------------|---------------------|----------------------|---------------------|----------------------|--------------------|----------| | Indicator | Unit | A1-A3 | A4 | A5 | C1 | C2 | С3 | C4 | D | | CRU | kg | 0,00E+00 | MFR | kg | 0,00E+00 | 0,00E+00 | 5,69E-02 | 0,00E+00 | 0,00E+00 | 8,81E-01 | 0,00E+00 | 0,00E+00 | | MER | kg | 0,00E+00 | EEE | MJ | 0,00E+00 | 0,00E+00 | -2,81E-01 | 0,00E+00 | 0,00E+00 | -4,94E-01 | 0,00E+00 | 0,00E+00 | | EET | MJ | 0,00E+00 | 0,00E+00 | -5,04E-01 | 0,00E+00 | 0,00E+00 | -8,79E-01 | 0,00E+00 | 0,00E+00 | | Acronyms | CRU Comp | ponents for reuse; MI | R Materials for recyc | ling; MER Materials | for energy recovery; | EEE Exported electr | ic energy; ETE Expor | ted thermal energy | | #### Information on biogenic carbon content | Biogenic carbon content | Unit per DU | Amount | |--------------------------------------|-------------|----------| | Biogenic carbon content in product | kg C | 0 | | Biogenic carbon content in packaging | kg C | 5,46E-02 | 1 kg biogenic carbon is equivalent to 44/12 kg CO2. #### **Disclaimers** | ILCD classification | Indicator | Disclaimer | |---------------------|--|------------| | | Global warming potential (GWP) | None | | ILCD Type 1 | Depletion potential of the stratospheric ozone layer (ODP) | None | | | Potential incidence of disease due to PM emissions (PM) | None | | | Acidification potential, Accumulated Exceedance (AP) | None | | | Eutrophication potential, Fraction of nutrients reaching | None | | | Freshwater end compartment (EP-freshwater) | None | | | Eutrophication potential, Fraction of nutrients reaching | None | | ILCD Type 2 | Marine end compartment (EP-marine) | None | | | Eutrophication potential, Accumulated Exceedance | None | | | (EP-terrestrial) | TOHE | | | Formation potential of tropospheric ozone (POCP) | None | | | Potential Human exposure efficiency relative to U235 (IRP) | 1 | | | Abiotic depletion potential for non-fossil resources (ADP-minerals&metals) | 2 | | | Abiotic depletion potential for fossil resources (ADP-fossil) | 2 | | | Water (user) deprivation potential, deprivation-weighted | 2 | | II CD Tuna 2 | Water consumption (WDP) | 2 | | ILCD Type 3 | Potential Comparative Toxic Unit for ecosystems (ETP-fw) | 2 | | | Potential Comparative Toxic Unit for humans (HTP-c) | 2 | | | Potential Comparative Toxic Unit for humans (HTP-nc) | 2 | | | Potential Soil quality index (SQP) | 2 | Disclaimer 1 – This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator. Disclaimer 2 – The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator. #### **Additional information** Greenhouse gas emission from the use of electricity in the manufacturing phase. | Residual mix | Unit | Value | |--------------------|------------------------------|--| | Location | | Greece | | | | Biomass: 1,44% | | | | Geothermal: 0,15% | | | | Hard coal: 5,62% | | | | Heavy Fuel Oil: 7,74% | | Elastwisiter mirr | | Hydro: 4,69% | | Electricity mix | | Lignite: 10,17% | | | | Natural gas: 49,30% | | | | Nuclear: 3,45% | | | | Photovoltaic: 9,07% | | | | Wind: 8,35% | | Reference year | | 2021 | | Source | | European Residual Mixes 2021 - Association of Issuing Bodies | | GWP excl. Biogenic | kg CO ₂ -eq. /kWh | 0,169 | #### References Association of Issuing AIB (2022) European Residual Mixes 2021. Ver. 1.0. Bodies Construction Products EPD International (2021) PCR 2019:14 Construction products and PCR 2019:14 version 1.3.2 construction services, version 1.3.2 EN 15804:2012+A2:2019 Sustainability of construction works - Environmental product declaration - Core rules for the product category of construction products GPI General Programme Instructions of the International EPD® System. Version 4. ISO 14020:2000 Environmental labels and declarations — General principles ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines SCB – Swedish Statistics (2020) Treated waste by treatment category and waste category. Every second year 2010 - 2020 https://www.statistikdatabasen.scb.se/pxweb/en/ssd/START__MI_ MI0305/MI0305T003/ Assessed 2024-02-22.