

Environmental Product Declaration

Polyethylene (PE) structured (twin) wall accessory for pipe connection- EVOCAB elbow

1. DECLARATION OF GENERAL INFORMATION

Introduction

The present EPD outlines the various environmental aspects, which accompany the polyethylene (PE) structured (twin) wall accessory for pipe connection- EVOCAB elbow, from the primary extraction of raw materials up to and including the end of life (EoL) treatment after its reference service lifetime.

Name and address of manufacturer:

EVOPIPES SIA, Langervaldes street 2a, Jelgava, LV-3002, Latvia. Tel.: +371 63094300, E-mail: info@evopipes.lv, http://www.evopipes.com

PE pipe system's use and functional unit

The EPD refers to a PE structured (twin) wall accessory for pipe connection- EVOCAB elbow, from the cradle to the grave, including raw material extraction, transportation to converters, converting process, transport to trench, construction, use and end of life. Environmental indicators are expressed for the complete life cycle, from the cradle to the grave. The functional unit is defined as "The below ground mechanical protection and insulation of cables by PE structured (twin) wall accessory for pipe connection- EVOCAB elbow (DN/OD 50 - 160 mm), over its complete service life cycle of 100 years, calculated per year".

Product name & graphic display of product

PE structured (twin) wall accessory for pipe connection- EVOCAB elbow.

Description of the PE structured (twin) wall accessory for pipe connection- EVOCAB elbow components

The environmental burdens are calculated for PE structured (twin) wall accessory for pipe connection-EVOCAB elbow. The color is black, the class of strength might be N450 and N750, diameter from DN/OD 50 to 160 mm, and length from 1 to 2 m.

Representative for the typical pipe diameter is DN/OD 110 mm and reference length is DN/OD 1m. Service lifetime of 100 years.

The EPD is declared as the average environmental performance for PE structured (twin) wall accessory for pipe connection- EVOCAB elbow, over its reference service life cycle of 100 years, calculated per year, in accordance to EN 61386.

EPD program and program operator

The present EPD is in line with the ongoing standardization work. A program operator has not been established yet.

Date of declaration and validity

September, 2021 The EPD has a 5 year validity period (September, 2026)

Comparability

Please note that EPDs of construction products may not be comparable if they do not comply with the CEN standards.

Content of the product system

The product system does not contain materials or substances that can adversely affect human health and the environment in all stages of the life cycle.

Retrieve information

Explanatory material may be obtained by contacting EVOPIPES (http://www.evopipes.com)

2. DECLARATION OF THE MATERIAL CONTENT

The polyethylene (PE) structured (twin) wall accessory for pipe connection- EVOCAB elbow does not contain any substances as such or in concentration exceeding legal limits, which can adversely affect human health and the environment in any stages of its entire life cycle.

Construction of the EVOCAB pipe

Material	Proportion, %	Description of the component
PE	~ 97 – 99	High Density Polyethylene (HDPE)
Additive	~ 0.1 - 0.9	Antioxidant, UV-stabilizer for long term performance
Pigment	~ 0.1 - 2.5	Polyethylene-based color masterbatch or mix of such

3. DECLARATION OF THE ENVIRONMENTAL PARAMETERS DERIVED FROM LCA

3.1 Life cycle flow diagram

The EPD refers to PE structured (twin) wall accessory for pipe connection- EVOCAB elbow, from the cradle to the grave, including product stage, transport to construction site and construction process stage, use stage and end of life stage.

-**Product stage:** raw material extraction and processing, recycling processes for recycled material input, transport to the manufacturer, manufacturing (including all energy provisions, waste management processes during the product stage up to waste for final disposal):

o Production of raw materials for PE pipes;

o Transport of PE pipe raw materials to converter;

o Converting process for PE structured (twin) wall pipes (extrusion).

Langervaldes str. 2a, Jelgava, LV-3002, Latvia

Phone: +371 630 94 300, Fax: +371 630 94 301, E-mail: info@evopipes.lv, www.evopipes.com

-Construction process stage: including all energy provisions, waste management processes during the construction stage up to waste for final disposal

o Transport of complete PE structured (twin) wall accessory for pipe connection- EVOCAB elbow to the trench;

o Installation of complete PE structured (twin) wall accessory for pipe connection- EVOCAB elbow in the trench.

-Use stage (maintenance and operational use): including transport and all energy provisions, cable system management processes

o Use and maintenance of the complete PE structured (twin) wall accessory for pipe connection-EVOCAB elbow during 100 years of reference service lifetime.

-End of life stage: including all energy provisions during the end of life stage

o Disassembly of complete PE structured (twin) wall accessory for pipe connection- EVOCAB elbow after 100 years of reference service lifetime;

o Transport of complete PE structured (twin) wall accessory for pipe connection- EVOCAB elbow after 100 years of reference service lifetime;

o End-of-life waste treatment of complete PE structured (twin) wall accessory for pipe connection-EVOCAB elbow after 100 years of reference service lifetime.

3.2 Parameters describing environmental impacts

The following environmental parameters are expressed with the impact category parameters of the life cycle impact assessment (LCIA).

Impact category	Abiotic	Acidification	Eutrophication	Global	Ozone layer	Photochemical
	depletion			warming	depletion	oxidation
	kg Sb eq	kg SO2 eq	kg PO4 eq	kg CO2 eq	kg CFC-11 eq	kg C2H4 eq
Product stage	0,02	0,0048	0,0012	1,26	0,0000002	0,001
Construction process stage	0,004	0,0036	0,001	0,56	0,000003	0,0002
Use stage	0	0	0	0	0	0
End of life stage	-0,00008	-0,00004	-0,00004	0,028	0,000000001	-0,000005
Total	0,02392	0,00836	0,00216	1,848	0,0000005	0,001195

3.3 Parameters describing resource input

The following env Environmental parameter	Non-	Renewable	Non-	Renewable	Crude oil	Natural gas	Input of net
Environmental parameter	-		-			0	•
	renewable	energy	renewable	material	(feedstock	(feedstock	fresh water
	energy	indicator	material	resources	and energy)	and energy)	
	indicator		resources	(other than			
			(other than	energy)			
			energy)				
	MJ primary	MJ primary	kg	kg	kg	kg	m³
Product stage	44,1	0,92	0,052	0,0108	0,468	0,308	1,736
Construction process stage	9,6	0,28	0,022	0,0014	0,148	0,0152	1,588
Use stage	0	0	0	0	0	0	0
End of life stage	-0,24	-0,03	0,00011	-0,000402	0,00126	-0,00116	-0,1044
Total	53,46	1,17	0,07411	0,011798	0,61726	0,32204	3,2196

and an the life much investory (ICI) ما مغمام .

3.4 Parameters describing different waste categories and further output material flows

The parameters describing waste categories and other material flows are output flows derived from the life cycle inventory (LCI)

Parameters describing different waste categories

Environmental parameter	Hazardous waste	Non-hazardous waste	Nuclear waste
	kg	kg	kg
Product stage	0,0190	0,012	0,00002
Construction process stage	0,00003	0,058	0,00001
Use stage	0	0	0
End of life stage	-0,000001	0,48	-0,000002
Total	0,01903	0,550	0,000028

Parameters describing further output material flows

Parameter	Parameter unit expressed per functional unit
Components for re-use	0,468 kg
Materials for recycling	0,042 kg
Materials for energy recovery	0,014 kg

4. SCENARIOS AND TECHNICAL INFORMATION

4.1 Construction process stage

Transport from the production gate to the construction site (trench)

Parameter	Parameter unit expressed per functional unit
Fuel type consumption of vehicle or vehicle	The PE structured (twin) wall accessory for pipe
type used for transport e.g. long distance	connection- EVOCAB elbow is transported over an
truck, boat etc.	average distance of 400 km by means of a truck
Capacity utilization (including empty returns)	from the producers of the different pipe system components to the trench. The average actual
Bulk density	load is 5 tons. The loading factor for EVOCAB pipes is limited by volume. Environmental burdens
Volume capacity utilization factor (factor: =1	associated with this kind of transport are
or <1 or ≥ 1 for compressed or nested packaged products)	calculated by means of the Ecoinvent V2.2 data record "Transport, lorry 16-32t, EURO4/tkm/RER".

Construction (installation at trench)

Parameter	Parameter unit expressed per functional unit
Ancillary materials for installation	0,09 m³ of backfilling fraction trucked to trench over an average distance of 15 km.
	Environmental burdens associated with this kind

	V2.2 data re	re calculated cord "Sand, a prry >32t, EUR	t mine/CH +	f the Ecoinvent
Other resource consumption	Not relevant			
Quantitative description of energy type	10 MJ of me	chanical ener	gy is needed	l for
(regional mix) and consumption during the installation process	excavating the soil (dig up) and backfilling. Environmental burdens associated with this kind of energy are calculated by means of the Ecoinvent V2.2 data record "Diesel, burned in building machine/MJ/GLO"			
Waste on the building site, generated by the product's installation	landfill, 4%	to incinerati	on and 95%	stallation: 1% to to mechanical
Output materials as result of waste management processes at the building site e.g. of collection for recycling, for energy recovery, final disposal	 recycling. Transportation of PE pipe left over to waste management treatment facilities is included: 600 km to recycling plant, 150 km to incineration with energy recovery and 50 km to landfill. Environmental burdens are calculated by means of the Ecoinvent v2.2 data record "Transport, lorry 3.5-7.5t, EURO4/tkm/RER". 0,021 kg of packaging waste: treated according to European average packaging waste scenarios (EU27, 2006): 			
		Recycling	Energy recovery	Landfill
	Plastic	45%	45%	10%
	Wood	25%	70%	5%
	TOTAL	35%	58%	7%
	over an ave depot. Envir means of the	soil that has t erage distanc onmental bur e Ecoinvent v orry 3.5-7.5t,	e of 10 km dens are calo 2.2 data reco	to the nearest culated by rd
Emissions to ambient air, soil and water	No direct (missions at	the trench	Emissions are

transportation processes and mechanical energy) and
downstream processes (waste management and
treatment) and are included in the Ecoinvent data
records that are used for modeling the environmental
impacts.

4.2 Use stage: operation and maintenance

Operation:

Operational use is not relevant for the EPD, since it falls outside the system boundaries of the LCA project. PE structured (twin) wall accessory for pipe connection- EVOCAB elbow does not need maintenance

4.3 End of life

The following end of life scenarios have been considered:

- Estimated reference service life time of 100 years based on technical assumptions

- EoL approach for landfill, incineration with energy recovery (impacts and credits are assigned to the life cycle that generates the waste flows)

- Recycled content approach for recycling and use of recycled material (= impact of recycling and credits for recycled materials, because less virgin materials are needed is assigned to the life cycle that uses the recycled materials).

Parameter	Parameter unit expressed per functional unit
Collection process	After a reference service life time of 100 years the PE
Recycling system	structured (twin) wall cable protection pipe system might be replaced. In most cases (95%) the pipe system will be
Final deposition	left in the ground. In some cases (5%) the pipe system is taken out and treated (mechanical recycling, incinerated or landfilled). Thus 4,9% is transported over an average distance of 600 km to a recycling plant, 0,1% is transported over an average distance of 150 km to an incinerator, and the remaining 95% is left in the ground. For the functional unit of TPE rings available at the trench
	5% will be transported to landfill over an average distance of 50 km, the rest is left in the ground.
	EoL scenario PE pipes:
	Mechanical recycling 4,9%
	Incineration 0,1%
	Left in ground 95%

5. ADDITIONAL INFORMATION ON EMISSIONS TO INDOOR AIR, SOIL AND WATER DURING USE STAGE

Emissions to indoor air:

Since the PE structured (twin) wall accessory for pipe connection- EVOCAB elbow is a buried system (in trench) we can confirm that emissions to indoor air are not relevant.

Emissions to soil and water:

Despite there is no approved European measurement method available, we can confirm that the PE structured (twin) wall accessory for pipe connection- EVOCAB elbow does not contain any substances mentioned on the REACH-list.

6. OTHER ADDITIONAL INFORMATION

Product certification, conformity, marking

EN 61386-1 Conduit systems for cable management - Part 1: General requirements (IEC 61386-1:2008/A1:2017)

EN 61386-24 Conduit systems for cable management - Part 24: Particular requirements - Conduit systems buried underground (IEC 61386-24:2004)

EN 1295-1, Structural design of buried pipelines under various conditions of loading. Part 1: General requirements

In compliance with European Construction Products Directive (89/106/EEC).

EVOPIPES' quality management system's compliance with ISO 9001, ISO 14001 and ISO 50001 is certified by BVQI.

Your contact:

EVOPIPES SIA Langervaldes street 2a, Jelgava LV-3002, Latvia

Phone: +371 63094300 E-mail: <u>info@evopipes.lv</u>

www.evopipes.com

